

	A B 5	
_	6 B C	
	2 C 6	

According to the given subtraction, what is the result of A + C? (2 points)

	A) 15	B) 16	C) 17	D) 18
--	-------	-------	-------	-------

CONCLUSIONS

Q2:1. Rightmost column (5 - C = 6):

Since 5 minus something results in 6, this indicates that there was borrowing.

So, we treat 5 as 15 (after borrowing from the tens place), and we have:

 $15 - C = 6 \Rightarrow C = 9$

2. Middle column (B - B = C):

After borrowing, B in the top row is reduced by 1. So, the subtraction becomes:

(B - 1) - B = 9

Therefore, B can be any number. The value of B is not important.

3. Leftmost column (A-6=2 after borrowing from A): Since we borrowed 1 from A, the equation becomes:

 $(A - 1) - 6 = 2 \Longrightarrow A = 9$

Now we know:

- A = 9
- B = 8
- C = 9

Finally, we calculate A + C:

A + C = 9 + 9 = 18

So, the correct answer is 18.

SOLUTION IS D

The mixed number above is converted into an improper fraction, resulting in $\frac{37}{r}$.

What is the value of A? (3 points)

A) 7 B) 8 C) 9 D) 10

CONCLUSIONS

Q3:A mixed number is converted to an improper fraction using the formula:

Improper fraction = $A \times denominator + numerator$ In this case:

$$\frac{37}{5} = A \times 5 + 2$$

Let's solve for A:

Start with the equation:

$$37 = A \times 5 + 2$$

Subtract 2 from both sides:

$$37 - 2 = A \times 5$$
$$35 = A \times 5$$

Divide both sides by 5:

$$A = \frac{35}{5} = 7$$

Thus, the value of A is 7.

SOLUTION IS A

ABCD is a square, and the angle (ADE) measures 31°. Points E, D, and F are collinear (lie on the same line).

What is the measure of m(CDF)? (4 points)

A) 31°	B) 59°	C) 69°	D) 90°
/	D) 00	0,00	D) 00

CONCLUSIONS

Q4:We have a square ABCD, and the angle (ADE) is given as 31°. Points E, D, and F are on a straight line. We need to find the angle (CDF).

In a square, all four corners are 90° . So, (\widehat{ADC}), which is one corner of the square, is 90° .

You know that (\widehat{ADE}) is 31°. Since E, D, and F are in a straight line, (\widehat{EDF}) forms a straight angle, which means it equals 180°. We can subtract the sum of angles ADE and ADC from the straight angle of 180° to find the remaining angle at (\widehat{CDF}) :

 $(\widehat{ADE}) + (\widehat{ADC}) = 31^{\circ} + 90^{\circ} = 121^{\circ}$ $(\widehat{CDF}) = 180^{\circ} - 121^{\circ} = 59^{\circ}$

SOLUTION IS B

Q6:

After Brian drives 10% of his journey, he has 45 km left to go.

Based on this information, how many kilometers is Brian's total journey? (5 points)

A) 50 km	B) 55 km
C) 60 km	D) 70 km

CONCLUSIONS

Q5:We know that after Brian drives 10% of his journey, he still has 45 kilometers left to go. That means the 45 kilometers represents the remaining 90% of the journey.

To find the total distance, we can think of the journey in parts. If 90% of the journey is 45 kilometers, then 10% of the journey must be:

$$\frac{45}{9} = 5$$
 kilometers

Now, if 10% of the journey is 5 kilometers, we can find the total distance by multiplying 10% by 10 to get 100% (the full journey):

 $5 \times 10 = 50$ kilometers

So, the total journey is 50 kilometers.

The correct answer is A.

SOLUTION IS A

In the figure composed of equal squares, the total length of the line segments of equal length is 190 cm.

What is the area of this rectangular shape? (6 points)

A) 375 cm ²	B) 350 cm ²
C) 325 cm ²	D) 300 cm ²

CONCLUSIONS

Q6:Since the total length of the line segments is 190 cm and there are 38 line segments, the length of each side of the square is:

 $\frac{90}{38} = 5 \text{ cm}$

So, each side of a square is 5 cm.

The rectangle consists of:

3 squares tall (height),

5 squares wide (width).

Each square has sides of 5 cm, so:

The total height of the rectangle is: $3 \times 5 = 15$ cm

The total width of the rectangle is: $5 \times 5 = 25$ cm.

The area of the rectangle is given by multiplying the width by the height:

Area = height \times width = 15 cm \times 25 cm = 375 cm²

The area of the rectangle is 375 cm², so the correct answer is A.

SOLUTION IS A

Q7:

The price of 4 kilograms of apples is equivalent to the price of either 3 kilograms of bananas or 5 kilograms of tomatoes.

Based on this, what is the ratio of the price of 1 kilogram of tomatoes to the total price of 1 kilogram of bananas and 1 kilogram of apples? (7 points)

<u>,</u> 20	_D , 12	<u> </u>	__ 12
$(A) \frac{1}{27}$	^{B)} 35	$(1)\frac{1}{22}$	$D) \frac{1}{37}$

CONCLUSIONS

Q7:Let's denote:

- The price of 1 kilogram of apples as a
- The price of 1 kilogram of bananas as b
- The price of 1 kilogram of tomatoes as t

From the problem, we know:

4a = 3b (The price of 4 kg of apples equals the price of 3 kg of bananas),

4a = 5t (The price of 4 kg of apples equals the price of 5 kg of tomatoes).

Step 1: Find the price of 1 kilogram of bananas and tomatoes

- From 4a = 3b, we can solve for b : b = $\frac{4a}{3}$
- From 4a = 5t, we can solve for t : t = $\frac{4a}{5}$

Step 2: Calculate the total price of 1 kilogram of apples and 1 kilogram of bananas

The total price of 1 kilogram of apples and 1 kilogram of bananas is:

$$a + b = a + \frac{4a}{3} = \frac{3a}{3} + \frac{4a}{3} = \frac{7a}{3}$$

Step 3: Find the ratio of the price of 1 kilogram of tomatoes to the total price of 1 kilogram of bananas and apples

Now, we need to find the ratio
$$\frac{1}{a+b}$$
:

$$\frac{t}{a+b} = \frac{\frac{4a}{5}}{\frac{7a}{3}} = \frac{4a}{5} \times \frac{3}{7a} = \frac{12}{35}$$

Thus, the correct answer is B.

SOLUTION IS B