#### **QUESTIONS 9-10**

**Q1:** Tautology is a proposition that is always true.

- I.  $(1 \rightarrow 0) \leftrightarrow (0 \rightarrow 1)$
- II.  $(0 \rightarrow 1) \leftrightarrow (1 \rightarrow 0)$
- III.  $(0 \rightarrow 1) \leftrightarrow (0 \rightarrow 1)$
- $\mathsf{IV.} \ (0 \to 1)^{\scriptscriptstyle \mathsf{I}} \leftrightarrow (1 \to 1)$

For the given propositions above, find their truth values and determine which ones are tautologies. (1 point)

| A) I and II | B) Only I |
|-------------|-----------|
|-------------|-----------|

| C) Only II |
|------------|
|------------|

D) Only III

E) I and III

#### Q3: Given the set

 $A = \{ \ 1, \ 2, \ 3, \ \{2\}, \ \{a\}, \ \varnothing\},$ 

which of the following is false? (1 point)

| A) 2 ∈ A   |          | $B)\left\{ 2\right\} \inA$ |
|------------|----------|----------------------------|
| C) {a} ∈ A |          | D) $\emptyset \in A$       |
|            | E) A ∈ A |                            |

**Q2:** The given open proposition is:

 $p(a):2a-1>-3+a\,,\,\,a\in R$ 

## What is the set of truth values for the proposition? (1 point)

| A) (−∞,−4) |            | B) (-2,2) |
|------------|------------|-----------|
| C) (−2,∞)  |            | D) (2,∞)  |
|            | E) {0,1,2} |           |

**Q4:** Given the set  $A = \{a, b, c, d, e, f\}$ 

how many subsets contain both "d" and "e" as elements? (1 point)

|  | A) 4 | B) 6 | C) 8 | D) 16 | E) 32 |
|--|------|------|------|-------|-------|
|--|------|------|------|-------|-------|

**Q5:** Here is the question in a more organized, bullet-point format:

In a school:

- 40% of the students are successful in Mathematics.
- 70% of the students are successful in English.
- 20% of the students are unsuccessful in both subjects.

It is given that:

There are 30 students who are successful only in Mathematics.

How many students are successful only in English? (1 point)

| A) 70 | B) 80 | C) 105 | D) 120 | E) 140 |
|-------|-------|--------|--------|--------|
|-------|-------|--------|--------|--------|

**Q7:** The sum of 10 consecutive positive odd numbers is 200.

What is the largest of these numbers? (2 points)

| A) 29 | B) 31 | C) 33 | D) 35 | E) 37 |
|-------|-------|-------|-------|-------|
| A) 29 | B) 31 | C) 33 | D) 35 | E) 3  |

**Q8:** 

| 12 | 15 | 18 | 21 | 39 |
|----|----|----|----|----|
| 2  | 5  | 5  | 5  | +5 |

What is the total value of the following expression? (2 points)

|  | A) 24 | B) 35 | C) 42 | D) 45 | E) 51 |
|--|-------|-------|-------|-------|-------|
|--|-------|-------|-------|-------|-------|



**Q6:** The graph of  $K \times M$  is given below.

Based on this information, which of the following represents the list notation of the set  $K \times M$ ? (2 points)

- A)  $\{(2, 3), (4, 3), (5, 3)\}$
- B) {(2, 5), (4, 5), (5, 5)}
- C)  $\{(3, 2), (3, 4), (3, 5)\}$
- $\mathsf{D}) \ \{(3,\,2),\,(3,\,4),\,(3,\,5),\,(5,\,2),\,(5,\,4),\,(5,\,5)\}$
- $\mathsf{E}) \hspace{0.2cm} \{(2, \, 3), \, (2, \, 5), \, (4, \, 3), \, (4, \, 5), \, (5, \, 3), \, (5, \, 5)\}$

- Q9: Factorial is the product of all natural numbers from "1" to "n" and is denoted as "n!".

For example:

- n! = 1.2.3....(n 1).n
- 2! = 1.2.
- 3! = 1.2.3
- 4! = 1 . 2 . 3 . 4 = 3! . 4

#### What is the value of the expression

11! + 10! ? (2 points)

| Δ) Q | B) 10 | C) 10 | D) 110 | F) 120 |
|------|-------|-------|--------|--------|
| n) 3 | D) 10 | 0)13  | D) 110 | L) 120 |

Q11: Let the two real numbers be x and y. The product of x and y is equal to 42.

x.y=42

When both numbers are increased by 3, their product increases by 39.

#### Based on this, how much does their product decrease when both numbers are decreased by 3? (3 points)

| A) 10 | D) 1E | () 10  |       | E) 20 |
|-------|-------|--------|-------|-------|
| A) 12 | D) 15 | (0) 10 | D) 21 | L) 39 |

Q10: The three-digit number "2xy" is 4 less than 7 times the two-digit number "xy".

Based on this, what is the value of the two-digit number "yx"? (2 points)

| A) 24 | B) 32 | C) 34 | D) 38 | E) 43 |
|-------|-------|-------|-------|-------|
|       |       |       |       |       |

Q12: Given the rational expressions:

$$\left(1+\frac{1}{2}\right)\cdot\left(1+\frac{1}{3}\right)\cdot\left(1+\frac{1}{4}\right)\cdot\cdots\cdot\left(1+\frac{1}{m}\right)$$

If "m = 41", what is the result of this multiplication? (3 points)

A) 
$$\frac{1}{41}$$
 B)  $\frac{1}{21}$  C)  $\frac{42}{21}$  D) 21 E) 41



(13.7-2.25) × 24.42

#### What is the result of this operation? (3 points)

| A) 279.609 |           | B) 279.620 |
|------------|-----------|------------|
| C) 279.690 |           | D) 280.609 |
|            | E) 282.30 |            |

Q15: I. (276.49)<sup>0</sup>

- II. (3−8√3)<sup>0</sup>
- III. 1<sup>-5236</sup>
- IV.  $(x^2 16)^0$
- V. (273)°

The given exponential expressions are provided above.

#### How many of them always equal "1"? (3 points)

| A) 1 | B) 2 | C) 3 | D) 4 | E) 5 |
|------|------|------|------|------|
|      |      |      |      |      |

**Q14:** The ordered pair (2, -1) satisfies the equations:

- y = x + m
- x = 3y n

What is the value of "m + n"? (3 points)

A) 2 B) 0 C) -2 D) -6 E) -8

Q16:

$$\frac{4}{3+\sqrt{7}} + \frac{14}{\sqrt{7}}$$

What is the result of given operation above? (4 points)

A) 
$$-\sqrt{7}$$
 B)  $\sqrt{7}$  C) 6  
D)  $6 - 4\sqrt{7}$  E)  $6 - \sqrt{7}$ 



The daily costs of electricity, water, and rent for a house are given in a pie chart.

If the total monthly cost of electricity, water, and rent is 1440 USD, what is the electricity bill? (4 points)

|  | A) 420 | B) 520 | C) 620 | D) 720 | E) 820 |
|--|--------|--------|--------|--------|--------|
|--|--------|--------|--------|--------|--------|

Q19: ABC is a right angled triangle.



|AD| = |BD| = 3 |BE| = 4, |EC| = 2

## Based on the given information, what is the area of the shaded region? (4 points)

| A) 9 | B) 10     | C) 11   | D) 12   | E) 18 |
|------|-----------|---------|---------|-------|
| , -  | - / · · · | - / · · | - / · - |       |

**Q18:** In a group of 5 students, the average age is 16 years.

When a new student joins the group, the average age decreases to 15.5 years.

#### What is the age of the new student? (4 point)

| A) 12 | B) 13 | C) 14 | D) 15 | E) 16 |
|-------|-------|-------|-------|-------|



According to the given figure, what is the value of " $\alpha$ "? (4 points)

| A) 30 | B) 31 | C) 32 | D) 33 | E) 34 |
|-------|-------|-------|-------|-------|
| ,     | ,     | ,     | ,     | ,     |



 $\frac{\tan 45^\circ + \cot 30^\circ}{\sin 30^\circ}$ 

What is the result of the given expression? (5 points)

| A) 1 + √3  | B) 1 − √3          |
|------------|--------------------|
| C) 2 + 2√3 | D) $2 - 2\sqrt{3}$ |
|            |                    |

E) 2 − √3

Q23:Given the set

A = {5, 6, 7, 8, 9},

how many different three-digit odd natural numbers can be formed using distinct digits? (5 points)

| A) 36 | B) 40 | C) 44 | D) 48 | E) 52 |
|-------|-------|-------|-------|-------|
| /     | / -   | - /   | / -   | / -   |

**Q22:** A 30-gram saltwater solution contains 20% salt.

Then, 20 grams of water and "x" grams of salt are added.

If the new solution is 60% salt, what is the value of "x"? (5 points)

| A) 80 | B) 75 | C) 70 | D) 65 | E) 60 |
|-------|-------|-------|-------|-------|
| ,     | ,     | ,     | ,     | ,     |

Q24:

$$\frac{n}{4!} + \frac{n}{5!} = 36$$

Considering given the equation, what is the value of "n"? (5 points)

| A) 5! | B) 6! | C) 7! | D) 8! | E) 9! |
|-------|-------|-------|-------|-------|
| ,     | ,     | ,     | ,     | ,     |

# Which of the following represents a valid function from A to B? (5 points)

A)  $f = \{(x, 1), (y, 2), (y, 3)\}$ B)  $f = \{(x, 1), (y, 3), (z, 3)\}$ C)  $f = \{(x, 2), (x, 3), (y, 2)\}$ D)  $f = \{(1, x), (2, z), (3, y)\}$ E)  $f = \{(x, 2), (y, 1)\}$  **Q27:** A function f(x) is defined as follows:

- f(x) = 2x + 1 if x < 0
- $f(x) = x^2 4x$  if  $0 \le x \le 3$
- f(x) = 3x 5 if x > 3

#### What is the value of f(-2) + f(2) + f(4)? (6 points)

A) 3 B) -1 C) 0 D) 5 E) 7

**Q26:** Given the function  $f : A \rightarrow \{-2, -1, 0, 1, 2\}$ , where f(x) = x - 3, it is stated that f is onto (surjective).

Accordingly, what is the sum of the elements in set A? (6 points)

| A) 12 | B) 15 | C) 18 | D) 21 | E) 24 |
|-------|-------|-------|-------|-------|
|       | ,     | ,     | ,     | ,     |



The graph of the function f(x) is given above.

Accordingly, which of the following represents the solution set of the equation f(x) = 0 in real numbers? (6 points)

| A) [-4, 6]    |               | B) [–3, 1] |
|---------------|---------------|------------|
| C) {-4, 1, 6} |               | D) {-4, 6} |
|               | E) {-2, 1, 3} |            |

Q29:

$$f\left(\frac{x+5}{x+6}\right) = x-3$$

Considering given the equation, what is the value of f(2)? (6 points)

A) -10 B) -8 C) -6 D) -4 E) -2

Q31: Given the polynomial

 $\mathsf{P}(\mathsf{x}) = \mathsf{x}^2 + \mathsf{x} - \mathsf{3},$ 

what is the constant term of the polynomial P(x + 2)? (7 points)

A) 1 B) 2 C) 3 D) 4 E) 5

**Q30:** Given the functions:

- f(x) = x + 3
- g(x) = 3 x

What is the value of (g o f )(-3)? (6 points)

A) –3 B) –1 C) 0 D) 1 E) 3

Q32: Given the quadratic equation:

 $x^2 + mx + (m - 2) = 0$ 

The roots satisfy the equations:

$$4x_{1} + x^{2} = 8$$
$$3x_{1} + x^{2} = 5$$

Based on this, what is the value of "m"? (7 points)

A) 
$$-\frac{7}{4}$$
 B)  $-\frac{3}{2}$  C)  $-\frac{5}{4}$  D)  $-1$  E)  $-\frac{3}{4}$ 



Q33:

ABCD is a trapezoid, and  $[DE] \perp [AB]$ (DE is perpendicular to AB).

Based on the given information in the figure, what is the area of ABCD in cm<sup>2</sup>? (7 points)

| A) 120 | B) 130 | C) 140 | D) 150 | E) 160 |
|--------|--------|--------|--------|--------|
|--------|--------|--------|--------|--------|

Q35: The base of an equilateral triangular prism has a side length of 8 cm, and its height is 12 cm.

What is the lateral surface area of the prism in cm<sup>2</sup>? (7 points)

| A) 288 | B) 324 | C) 360 | D) 396 | E) 420 |
|--------|--------|--------|--------|--------|
|        | -,     | -,     | - /    | _,     |



In the given figure, a regular hexagon, a regular pentagon, and a square are provided.

Based on this information, what is the measure of  $m(\widehat{DCP}) = \alpha$  in degrees? (7 points)

|  | A) 24 | B) 30 | C) 36 | D) 42 | E) 48 |
|--|-------|-------|-------|-------|-------|
|--|-------|-------|-------|-------|-------|